
Online Monitoring

John Freeman
10 January 2018

Jan-10-2018 John Freeman2

Online Monitoring in artdaq
● The basic model is the ability to launch an art process which can read in

live events sent to it by an artdaq dispatcher process
● Lots of f lexibility is built-in:

● As long as the dispatcher is initialized, it's possible to launch online
monitoring processes and kill them at any point without affecting the
primary DAQ dataf low

● In principle, can have any number of dispatchers on any number of
nodes, with any number of art processes attached to each dispatcher

● Can apply art modules both in the online monitoring art processes
(primarily f ilter and analysis modules) as well as on the Dispatcher end
(primarily f ilter modules)

● Robust – online monitoring art crashes will not affect primary DAQ dataf low

Jan-10-2018 John Freeman3

Online Monitoring in artdaq

●

Jan-10-2018 John Freeman4

Online Monitoring in artdaq

●

Jan-10-2018 John Freeman5

When an Online Monitoring Process Is Launched

● artdaq supplies an input source for art, TransferInput, which is capable of
reading in live events from the DAQ system (cf. RootInput, which reads in
events from *.root f iles)

● TransferInput sends the FHiCL def inition of a transfer plugin and art
modules up to the dispatcher. The art modules are optional, and would
typically be f ilter modules.

● The dispatcher launches a “sister” art process which includes the art
modules in its workf low, and uses the transfer plugin def inition in its
TransferOutput output to send events to the online monitoring art process

Jan-10-2018 John Freeman6

What This Looks Like

● This is a UML diagram of an art online
monitor connected to a Dispatcher process

● Notched rectangle == process

● Normal rectangle == class instance

● Line without diamond == “works with”

● Line with diamond == “owns”

Jan-10-2018 John Freeman7

The FHiCL
● This is a skeleton, in

that I've omitted
some of what would
actually be here so
we don't get lost in
details

● The
dispatcher_conf ig
table is sent up to the
Dispatcher via the
commander plugin so
that it can use the
contents to start the
sister art process

Jan-10-2018 John Freeman8

Stopping Online Monitoring
● To stop online monitoring, one needs only to send the art process the

SIGINT signal – i.e., Ctrl-c in its terminal, or “kill -SIGINT <art process
ID>”, as is done in /nfs/sw/om/fcl/StopOM_lite.sh on the teststand

● As mentioned before, this will not affect datataking – events will still
f low through the system if it's in the “running” state

● When SIGINT is received, TransferInput sends a message to the
Dispatcher telling it that the art online monitor wants to unregister; the
Dispatcher will kill off the sister art process

● If the online monitoring dies a messy death, then the sister art process
will continue to exist and attempt to send events into the “ether”.
Again, the primary DAQ dataf low will be unaffected.

● Related – if we're running and the sister art process dies a messy
death, the Dispatcher will regenerate it!

Jan-10-2018 John Freeman9

A Boundary Condition

● In a terminal, when setting up the environment to perform online
monitoring, not only are the packages used in the art workf low needed
but artdaq (and its dependencies) as well, as artdaq supplies
TransferInput

● Therefore, any packages which both artdaq and the art modules
depend on have to have the same versions and qualif iers

● On protoDUNE, we use the dunetpc package, which, like artdaq, is
based on artdaq-core. Unlike artdaq, its artdaq-core version on the
develop branch bumps up relatively frequently, and outside our
control, introducing version mismatches.

Jan-10-2018 John Freeman10

Ensuring Consistent Package Versions
● Whenever dunetpc bumps their artdaq-core version, we bump ours

– This would require frequent new releases of artdaq, with all the overhead that implies.
Plus protoDUNE's not the only experiment which would be bumping off line package
versions

● Move TransferInput into artdaq-core

– At least currently, this would effectively couple every experiment's off line software to
our online software, introducing things like a dependency on XML-RPC which don't
make sense in an off line context

● Have a feature branch of dunetpc dedicated to online monitoring which
we (myself, Jingbo, Tonino, etc.) can control:
feature/online_monitoring_artdaq

– Issue here is that useful new online code isn't immediately available to off line, and
vice versa. Plus if useful new off line code is made using a version of artdaq-core
which isn't compatible with the one on the online feature branch, we've got some
handshaking issues

Jan-10-2018 John Freeman11

Also on the Subject of Packaging

● It's not guaranteed that art modules which run in an experiment's
online monitor art process will be able to run in the monitor's upstream
sister art process

● E.g., on protoDUNE, while online monitoring uses dunetpc, dune-
artdaq doesn't depend on this package

● This may not be a big issue to the extent that in general you're more
likely to need a fuller set of packages for online monitoring purposes
than for cutting-at-the-Dispatcher-level purposes

● Therefore, any packages which both artdaq and the art modules
depend on have to have the same versions and qualif iers

Jan-10-2018 John Freeman12

In Summary

● A lot of f lexibility is available in terms of the art workf lows you can
apply to events for online monitoring purposes

● Flexibility is also available for the physical transport mechanism of
events (transfer plugins)

● And there's even (potential) f lexibility in how an art monitoring process
sends the Dispatcher its FHiCL code

● Sins are (mostly) forgiven: very slow art modules and even art
modules which crash won't slow down the “primary path” of events,
getting written to disk by the DataLogger(s)

● Although it's not a perfect world: package versions must be carefully
managed

	Slide 1
	The “art” in artdaq
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

